domingo, 1 de septiembre de 2013

Ácidos Carboxílicos Laurita :)

Creado por: Laura Andrea Carreño Ribero 
Curso: 11-2 T

ÁCIDO CARBOXÍLICO EN LA INDUSTRIA

Los ácidos carboxílicos son compuestos orgánicos que contienen uno, dos o más grupos carboxilo (—COOH o —CO2H).
El más simple es el ácido metanoico (ácido fórmico), y uno de los más familiares es el ácido etanoico (ácido acético), que en estado diluido e impuro forma parte del vinagre. Los ácidos carboxílicos con un único grupo carboxilo y, generalmente, de cadena lineal se denominan ácidos grasos; la cadena hidrocarbonada puede ser saturada o bien contener uno o más enlaces dobles. Muchos ácidos carboxílicos son esenciales en la química de los organismos vivos. Otros son productos químicos de gran importancia industrial.
El nombre de los ácidos carboxílicos comienza con la palabra “ácido” seguida por el nombre del alcano básico terminado en “oico”. Para los ácidos alifáticos, el carbono uno corresponde al carbono carboxilo. Los ácidos mas frecuentes se conocen por sus nombres comunes, por ejemplo Ácido metanoico o fórmico, HCOOH; Ácido etanoico o Ácido acético, CH3 - COOH; Ácido propanoico o propiónico, CH3 - CH2 - COOH; Ácido butanoico o butírico, CH3 - CH2 - CH2 - COOH.

PROPIEDADES FISICAS

Los ácidos de masa molar baja (hasta diez átomos de carbono) son líquidos incoloros, de olor muy desagradable. El olor del vinagre se debe al ácido acético; el de la mantequilla rancia al ácido butírico. El ácido caproico se encuentra en el pelo y secreciones del ganado caprino. Los ácidos C5 a C10 poseen olores a “cabra”. El resto sólidos cerosos e inodoros a temperatura ambiente. Sus puntos de fusión y ebullición crecen al aumentar la masa molar.
Los ácidos inferiores son solubles en agua; su solubilidad decrece a partir del ácido butírico con el aumento del carácter hidrocarbonado de la molécula. Todos los ácidos son solubles en solventes orgánicos
Estructura
La fórmula electrónica de un ácido carboxílico se representa de la forma siguente:
'Ácidos carboxílicos'
La densidad electrónica del enlace — C = O, está desplazada hacia el átomo de oxígeno más electronegativo adquiriendo este una carga parcial negativa. A la vez en el enlace oxígeno-hidrógeno hay un desplazamiento electrónico hacia el átomo de oxígeno, lo que permite la salida del hidrogeno como protón:
'Ácidos carboxílicos'
Cuando se ioniza un ácido carboxílico, el anión carboxilato que se produce tiene una carga negativa deslocalizada y compartida entre los dos átomos de oxígeno.
Los ácidos carboxílicos en general tienen una Ka de10-5 a 10-3, y son más ácidos que los alcoholes y el agua (Ka del orden de 10-8 y 10-14 respectivamente)
El grupo hidroxilo permite la formación de asociaciones moleculares por puente de hidrógeno, que se pueden representar de la forma siguiente:
'Ácidos carboxílicos'
La asociación de dos moléculas (dímero) mediante un puente de hidrógeno hace que la temperatura de ebullición sea mayor que la de compuestos heterólogos (sustancias que presentan el mismo número de carbonos y pertenecen a funciones diferentes). La presencia en estos compuestos del grupo funcional carboxilo, así como la característica de la cadena carbonada, son factores determinantes de las propiedades físicas.
La irregularidad de las temperaturas de fusión presentada en la tabla está relacionada con el modo en que se disponen las moléculas cuando el compuesto adquiere el estado sólido. En las moléculas con número par de átomos de carbono, los grupos carboxilo y metilo terminales, están situados en lados opuestos de la cadena carbonada dispuesta en zigzag, lo que permite, que las moléculas se dispongan más juntas en el retículo, razón por la cual aumentan las fuerzas de atracción intermoleculares y la temperatura de fusión.
Los ácidos que tienen hasta cuatro átomos de carbono son solubles en agua, esta propiedad disminuye con el aumento de la cadena y, por tanto la masa molar, ya que predomina en la molécula la porción de hidrocarburo con respecto al grupo carboxilo. Por ello, el ácido de cinco átomos de carbono ya es poco soluble en agua y los demás son prácticamente insolubles en ella.

PROPIEDADES QUIMICAS

Acidez
La reacción más característica de los ácidos carboxílicos es su ionización
'Ácidos carboxílicos'
Esta ionización se atribuye al desplazamiento electrónico a lo largo del doble enlace del grupo carbonilo hacia el átomo de oxígeno, dejando una carga positiva parcial sobre el átomo de carbono, provocando un desplazamiento inductivo a lo largo de los enlaces C - O y O - H, en sentido opuesto al átomo de hidrógeno, que puede ser extraído por interacción con una base. Por otra parte, el anión producido por la pérdida de un protón es un híbrido de resonancia de dos estructuras canónicas. La deslocalización de la carga estabiliza el anión, por lo que este puede formarse con mayor facilidad Ácidos Carboxílicos
Entre los ácidos alifáticos monocarboxílicos a medida que aumenta el número de carbonos disminuye su acidez porque los grupos hidrocarbonados son donadores de electrones, lo que hace que a mayor número de carbonos se fortalezca el enlace O - H y disminuye la facilidad de la liberación del ión hidrógeno.
Reacción de neutralización
Los ácidos carboxílicos sencillos son ácidos débiles que al reaccionar con bases fuertes, como el hidróxido de sodio, originan sales estables que son sólidos solubles en agua y se hallan completamente disociadas en solución. Son sales iónicas A las sales orgánicas se les nombra de la misma manera que a las sales inorgánicas. Al nombre del anión orgánico le sigue el nombre del catión. El nombre del anión se obtiene eliminando la terminación “ico” de los ácidos y reemplazándola por la terminación “ato”. Esto se aplica tanto a los nombres comunes como a los nombre IUPAC. El acetato de sodio, CH3 - COONa, se usa principalmente como vehículo para administrar un catión, también puede emplearse como alcalinizante porque se metaboliza con rapidez.
El acetato de potasio, CH3 - COOK, se emplea para reparar la deficiencia de potasio. Los propionatos de sodio y calcio se incorporan a la masa del pan como inhibidores no tóxicos del crecimiento de mohos. El propionato sódico se utiliza para tratar dermatomicosis, al igual que el ácido caprílico y sus sales. El undecilenato de zinc es un polvo blanco fino que tiene propiedades antimicóticos. El palmitato y el estearato de sodio son los constituyentes detergentes de los jabones. El benzoato de sodio se emplea como conservador de alimentos.
Reacción de los ácidos carboxílicos con amoniaco
Los ácidos carboxílicos reaccionan con el amoniaco formando amidas, en una reacción muy lenta a la temperatura ambiente. Primero se forma la sal de amonio y se separa el agua si la reacción se mantiene por encima de los 100 ºC. La ecuación general es:
'Ácidos carboxílicos'
Formación de haluros de acilo
Los ácidos carboxílicos reaccionan con ciertos halogenuros de no metales (como el fósforo) para formar halogenuros de acilo. Para la obtención de los cloruros, los más empleados son el PX3, PX5 y SOX2. Las reacciones son las siguientes
'Ácidos carboxílicos'
Los cloruros de acilo alifáticos son líquidos muy reactivos, de punto de ebullición inferior al del ácido carboxílico correspondiente. Al igual que otros muchos compuestos halogenados de gran reactividad, son lacrimógenos y causan quemaduras graves en contacto con la piel. Al aire emiten humos pálidos de cloruro de hidrógeno, debido a su reacción con el vapor de agua atmosférico. Los grupos acilos se nombran con el mismo del ácido de donde provienen eliminando la teminación “ico” y reemplazándola por “ilo”.
Formación de anhídridos orgánicos
De acuerdo a su estructura, se considera que los anhídridos de ácido se forman por eliminación de una molécula de agua entre dos moléculas de ácido. La reacción general de la formación de un anhídrido orgánico es
'Ácidos carboxílicos'
Los anhídridos de ácido se pueden obtener, también, por reacción entre el cloruro de acilo y una sal carboxílica. Los anhídridos de los ácidos alifáticos inferiores son líquidos de olores penetrantes, escasamente solubles en agua. Los anhídridos de ácido reaccionan con los mismos reactivos que los ésteres, pero con una reactividad intermedia entre la de los ésteres y la de los cloruros de acilo.
Formación de nitrilos
Los nitrilos se consideran derivados de los ácidos carboxílicos puesto que tienen el mismo estado de oxidación. Su fórmula general es R -CN y se nombran como ésteres del ácido cianhídrico o como cianoderivados de los hidrocarburos. Por ejemplo, el propionitrilo o cianuro de n-propilo es de fórmula CH3 - CH2 - CH2 - CN
Una forma de obtener nitrilos es mediante la deshidratación de amidas u oximas en presencia de pentóxido de fósforo, de acuerdo a la siguiente reacción:
'Ácidos carboxílicos'
Los nitrilos son sólidos o líquidos neutros. Los nitrilos alifáticos de pocos átomos de carbono son solubles en agua. Son compuestos covalentes y su toxicidad no es tan elevada como la de los cianuros iónicos, ya que no producen ácido cianhídrico por hidrólisis. La hidrólisis ácida de los nitrilos produce, primero, la amida correspondiente y, si prosigue, se obtiene el correspondiente ácido carboxílico.
El grupo nitrilo se encuentra en glucósidos vegetales y en la vitamina B12. La deficiencia de vitamina B12 puede producir anemia megalobástica, leucopenia y trombocitopenia. Una dieta vegetariana estricta, que incluya huevos y leche, no posee virtualmente nada de vitamina B12.
Reducción de ácidos carboxílicos
La reducción de ácidos carboxílicos es muy difícil. El hidruro de aluminio y litio reduce los ácidos carboxílicos a los alcoholes correspondientes en condiciones suaves
Reconocimiento de los ácidos carboxílicos: Prueba del yodato-yoduro
Es una reacción característica de los ácidos carboxílicos, que produce yodo molecular, que reconocemos por la coloración azul que adquiere el medio de la reacción al agregarle una solución de almidón. El ácido se combina con una mezcla de yodato de potasio, KIO3, y yoduro de potasio, KI, y se produce la siguiente reacción:
'Ácidos carboxílicos'

USOS
se utilizan los acidos carboxilicos como emulsificantes, se usan especialmente para pH bajos, debido a su estabilidad en estas condiciones.

Además se usan como antitranspirantes y como neutralizantes, tambien para fabricar detergentes biodegradables, lubricantes y espesantes para pinturas. El ácido esteárico se emplea para combinar caucho o hule con otras sustancias, como pigmentos u otros materiales que controlen la flexibilidad de los productos derivados del caucho; también se usa en la polimerización de estireno y butadieno para hacer caucho artificial. Entre los nuevos usos de los ácidos grasos se encuentran la flotación de menas y la fabricación de desinfectantes, secadores de barniz y estabilizadores de calor para las resinas de vinilo. Los ácidos grasos se utilizan también en productos plásticos, como los recubrimientos para madera y metal, y en los automóviles, desde el alojamiento del filtro de aire hasta la tapicería.


Ácido Fórmico:
Se utiliza como conservador en la industria cervecera y vitivinícola.
Se emplea en el teñido de telas y en curtiduría.




Ácido Acético: 
(vinagre):Es el más usado. Se emplea para preparar acetona, rayón, solvente de lacas y resinas. 
Con el ácido salicílico forma la aspirina.



Ácido acrílico:
nombre común en química para el ácido propénico, CH2=CH-COOH. Este compuesto orgánico es un líquido incoloro, inflamable, cáustico y de olor punzante, con una temperatura de ebullición de 142 ºC. El ácido acrílico es el ácido carboxílico insaturado más sencillo; sus sales y ésteres se denominan acrilatos. Industrialmente, este ácido se obtiene, entre otros procedimientos, por oxidación catalítica del propeno o por hidrólisis de la acroleína. Debido al doble enlace, el ácido acrílico —al igual que los compuestos derivados del mismo— es muy reactivo. Su reacción principal es la polimerización: los poliacrilatos resultantes son a menudo transparentes pero quebradizos. Para modificar sus propiedades físicas y químicas, pueden combinarse con otros componentes (copolimerización). Así, el ácido acrílico es el material de partida para fabricar plásticos, barnices, resinas elásticas y adhesivos transparentes.
Ácido benzoico:
sólido de fórmula C6H5—COOH, poco soluble en agua y de acidez ligeramente superior a la de los ácidos alifáticos sencillos. Se usa como conservador de alimentos. Es poco tóxico y casi insípido. Se combina con el ácido salicílico en forma de pomada con propiedades antimicóticos. Puede aplicarse sin peligro a la piel.
Ácido fumárico:
Es el ácido trans-butenodioico, compuesto cristalino incoloro, de fórmula HO2CCH=CHCO2H, que sublima a unos 200 °C. Se encuentra en ciertos hongos y en algunas plantas, a diferencia de su isómero cis, el ácido maleico (cis-butenodioico), que no se produce de forma natural.
Es soluble en agua caliente, éter y alcohol. Se obtiene por deshidratación del ácido málico y por isomerización del ácido maleico por distintos procedimientos (acción de la luz, calentamiento...). Interviene en el ciclo de Krebs como intermediario metabólico.
Se utiliza en el procesado y conservación de los alimentos por su potente acción antimicrobiana, y para fabricar pinturas, barnices y resinas sintéticas.
Ácido linoleico:
Líquido oleoso, incoloro o amarillo pálido, de fórmula CH3(CH2)4(CH=CHCH2)2(CH2)6CO2H, cuyos dobles enlaces presentan configuración cis. Es soluble en disolventes orgánicos y se polimeriza con facilidad, lo que le confiere propiedades secantes. El ácido linoleico es un ácido graso esencial, es decir, es un elemento necesario en la dieta de los mamíferos por ser uno de los precursores de las prostaglandinas y otros componentes de tipo hormonal.
Se encuentra como éster de la glicerina en muchos aceites de semillas vegetales, como los de linaza, soja, girasol y algodón. Se utiliza en la fabricación de pinturas y barnices.
Ácido oleico:
 líquido oleoso e incoloro, de fórmula CH3(CH2)7CH=CH(CH2)7CO2H en su configuración cis (la cadena de carbono continúa en el mismo lado del doble enlace). Es un ácido graso no saturado que amarillea con rapidez en contacto con el aire. Por hidrogenación del ácido oleico se obtiene el ácido esteárico (saturado). No es soluble en agua, pero sí en benceno, alcohol, éter y otros muchos disolventes orgánicos. Se solidifica por enfriamiento y funde a 14 °C. Su isómero trans (ácido elaídico) es sólido y funde a 51 °C; se puede obtener por calentamiento del ácido oleico en presencia de un catalizador.
Junto con el ácido esteárico y el ácido palmítico se encuentra, en forma de éster, en la mayoría de las grasas y aceites naturales, sobre todo en el aceite de oliva. Se obtiene por hidrólisis del éster y se purifica mediante destilación. Se utiliza en la fabricación de jabones y cosméticos, en la industria textil y en la limpieza de metales.
Ácido salicílico:
 sólido blanco y cristalino, que se encuentra en numerosas plantas, en especial en los frutos, en forma de metilsalicilato, y se obtiene comercialmente a partir del fenol. Su fórmula es:

Tiene un sabor ligeramente dulce; es poco soluble en agua y más soluble en alcohol, éter y cloroformo. Tiene un punto de fusión de 159 °C. Este ácido se emplea sobre todo para preparar algunos ésteres y sales importantes. El salicilato de sodio, que se obtiene tratando el fenolato de sodio con dióxido de carbono a presión, se usa para preservar alimentos y en mayor medida para elaborar preparados antisépticos suaves como pasta de dientes y colutorios. Los compuestos salicílicos medicinales empleados como analgésicos y antipiréticos son el ácido acetilsalicílico y el fenilsalicilato, que se venden bajo el nombre comercial de aspirina y salol, respectivamente. El metilsalicilato es el principal componente del aceite de gaulteria o esencia de Wintergreen, y se fabrica sintéticamente en grandes cantidades por reacción de ácido salicílico y metanol.
Ácido caprílico o Ácido undecilénico:
 es un líquido amarillo de fórmula CH3(CH2)4COOH, con olor a rancio característico, de actividad fungicida contra diversos hongos. El ácido caprílico y sus sales presentan acción dermatomicótica.
Ácido esteárico:
 sólido orgánico blanco de apariencia cristalina, de fórmula CH3(CH2)16COOH. No es soluble en agua, pero sí en alcohol y éter. Junto con los ácidos láurico, mirístico y palmítico, forma un importante grupo de ácidos grasos. Se encuentra en abundancia en la mayoría de los aceites y grasas, animales y vegetales, en forma de éster—triestearato de glicerilo o estearina— y constituye la mayor parte de las grasas de los alimentos y del cuerpo humano. El ácido se obtiene por la hidrólisis del éster, y comercialmente se prepara hidrolizando el sebo. Se utiliza en mezclas lubricantes, materiales resistentes al agua, desecantes de barnices, y en la fabricación de velas de parafina. Combinado con hidróxido de sodio el ácido esteárico forma jabón (estearato de sodio).
El ácido esteárico se emplea para combinar caucho o hule con otras sustancias, como pigmentos u otros materiales que controlen la flexibilidad de los productos derivados del caucho; también se usa en la polimerización de estireno y butadieno para hacer caucho artificial.
El ácido esteárico tiene un punto de fusión de 70 °C y un punto de ebullición de 383 °C.
Ácido láctico Ácido 2-hidroxipropanoico:
Compuesto incoloro de fórmula CH3CHOHCOOH. Se da bajo dos formas ópticamente activas,dextrógira y levógira*, frecuentemente denominadas ácido D-láctico y ácido L-láctico. En su estado natural es una mezcla ópticamente inactiva compuesta por partes iguales de ambas formas D- y L-, conocida como mezcla 'racémica'.
Normalmente se prepara por fermentación bacteriana de lactosa, almidón, azúcar de caña o suero de la leche. Pequeñas cantidades de ácido L-láctico están presentes en la sangre y en otros fluidos y órganos del cuerpo; este ácido se forma en los tejidos, sobre todo los musculares, que obtienen energía metabolizando azúcar en ausencia de oxígeno. La acumulación de grandes cantidades de este ácido en los músculos produce fatiga y puede causar calambres. El ácido láctico que se forma en la leche por la fermentación de la lactosa es el que hace que aquélla se agrie. El ácido láctico se utiliza para elaborar queso, chucrut, col fermentada, bebidas suaves y otros productos alimenticios.

BENEFICIOS Y RIESGOS PARA LA SALUD

Los riesgos específicos de los ácidos inorgánicos más importantes desde el punto de vista industrial se describen más adelante; no obstante, debe decirse que todos estos ácidos poseen ciertas propiedades peligrosas comunes a todos ellos. Las soluciones de ácidos inorgánicos no son inflamables por sí mismas, pero
cuando entran en contacto con ciertos productos químicos o materiales combustibles, se pueden producir incendios o explosiones. Estos ácidos reaccionan con determinados metales liberando hidrógeno, que es una sustancia altamente inflamable y explosiva cuando se mezcla con el aire o con oxígeno. También pueden actuar como agentes oxidantes y, cuando contactan con productos orgánicos u otras sustancias oxidables, pueden reaccionar de forma violenta.
Efectos en la salud. Los ácidos inorgánicos son corrosivos, especialmente cuando se encuentran a altas concentraciones. Pueden destruir los tejidos corporales y producir quemaduras químicas cuando entran en contacto con la piel y las mucosas. Son especialmente peligrosos los accidentes oculares. Los vapores o nieblas de los ácidos inorgánicos irritan el tracto respiratorio y las mucosas, dependiendo el grado de irritación de su concentración; los trabajadores expuestos a estos ácidos pueden sufrir también decoloración o erosiones de los dientes. El contacto repetido con la piel provoca dermatitis. La ingestión accidental de ácidos inorgánicos concentrados causa grave irritación de la garganta y el estómago, así como destrucción tisular de los órganos internos, a veces mortal a no ser que se efectúe inmediatamente el tratamiento de urgencia adecuado. Algunos ácidos inorgánicos actúan también como agentes tóxicos sistémicos.
Los ácidos carboxílico son beneficiosos en distintas áreas como la medicina y la industria. por ejemplo:
El acido acético, se emplea como disolvente y en la fabricación en una gran variedad de productos químicos orgánico: plásticos, gomas, drogas, entre otras. también se utiliza en la industria del cultito de colorantes.
El acido cítrico, que provee el sabor agrio a los frutos cítrico, es un importante intermediario del metabolismo de los carbohidratos, y se emplea comercialmente en grandes cantidades como acidificante de bebidas refrescante.
El acido butanoico (butírico), presente en la mantequilla, se emplea para fabricar perfumes sintéticos, saborizantes y aditivos alimenticios.
La aspirina también es un acido carboxílico (acido acetilsatisilirico) su popularidad se debe a sus propiedades analgésicas, antipirereticas y antifamatorias, se utilizan, además, como drogas anticoagulante, para prevenir la formación de coágulos sanguíneos.

NOMENCLATURA


La IUPAC nombra los ácidos carboxílicos reemplazando la terminación -ano del alcano con igual número de carbonos por -oico

nomenclatura-acidos-carboxilicos 

Cuando el ácido tiene sustituyentes, se numera la cadena de mayor longitud dando el localizador más bajo al carbono del grupo ácido. Los ácidos carboxílicos son prioritarios frente a otros grupos, que pasan a nombrarse como sustituyentes.

nomenclatura-acidos-carboxilicos-02

Los ácidos carboxílicos también son prioritarios frente a alquenos y alquinos. Moléculas con dos grupos ácido se nombran con la terminación -dioico.

nomenclatura-acidos-carboxilicos-03

Cuando el grupo ácido va unido a un anillo, se toma el ciclo como cadena principal y se termina en 
-carboxílico.

nomenclatura-acidos-carboxilicos-04.gif

BIBLIOGRAFIA

http://jeisonzapata.bligoo.com/content/view/3823605/aplicacion-del-acido-carboxilico-en-las-industrias-de-vinagre.html#.UiOIQ9IyJOI
http://profesionseg.blogspot.com/2007/05/riesgos-de-los-acidos-inorganicos.html
http://www.slidefinder.net/i/iod%C3%B3foros/32438139/p2
http://acidoscarboxilicosporchristiande11a.blogspot.com/p/usos-o-aplicaciones.html
http://usoscompuestosorganicos.blogspot.com/2012/06/acidos-carboxilicos-los-acidos.html
http://html.rincondelvago.com/acidos-carboxilicos_3.html

sábado, 31 de agosto de 2013

Ácidos Carboxílicos En La Industria

Creado por : Nahid Daniela Vera Chinchilla
Grado : 11-2 T

ÁCIDOS CARBOXÍLICOS EN LA INDUSTRIA

Los ácidos carboxílicos presentan un átomo de carbono primario unido a un átomo de oxígeno mediante enlace doble y, simultáneamente, a un grupo alcohol. Se forma, entonces, el grupo ácido carboxílico, R-COOH, que recibe este nombre por su carácter ácido, ya que disuelto en agua, se disocia:

R-COOH R-COO- + H+

HCOOH

CH3-COOH

CH3-CH2-COOH

CH3-CH2-CH2-COOH

CH3-CH2-CH2-CH2-COOH

Los ácidos carboxílicos se nombran anteponiendo la palabra ácido al nombre del correspondiente hidrocarburo y el sufijo -oico.
El ácido metanoico recibe el nombre de ácido fórmico, ya que es el causante del picor que producen las mordeduras de las hormigas.
Sin dudar, el ácido carboxílico más importante es el ácido etanoico, que se llama normalmente ácido acético y es el ácido presente en el vinagre. El ácido acético se obtiene por oxidación del etanol, para uso alimentario, o por oxidación del eteno, para usos industriales.
Como los alcoholes, los ácidos carboxílicos son solubles en agua.

PROPIEDADES

Propiedades Físicas :

Solubilidad: El grupo carboxilo –COOH confiere carácter polar a los ácidos y permite la formación de puentes de hidrógeno entre la molécula de ácido carboxílico y la molécula de agua. La presencia de dos átomos de oxígeno en el grupo carboxilo hace posible que dos moléculas de ácido se unan entre sí por puente de hidrógeno doble, formando un dímero cíclico.



Esto hace que los primeros cuatro ácidos monocarboxílicos alifáticos sean líquidos completamente solubles en agua. La solubilidad disminuye a medida que aumenta el número de átomos de carbono. A partir del ácido dodecanóico o ácido láurico los ácidos carboxílicos son sólidos blandos insolubles en agua. 


En los ácidos aromáticos monocarboxílicos, la relación carbono-carbono es de 6:1 lo que provoca que la solubilidad se vea disminuida con respecto a los ácidos monocarboxílicos alifáticos.

Punto de ebullición: Los ácidos carboxílicos presentan puntos de ebullición elevados debido a la presencia de doble puente de hidrógeno.




Punto de fusión: El punto de fusión varía según el número de carbonos, siendo más elevado el de los ácidos fórmico y acético, al compararlos con los ácidos propiónico, butírico y valérico de 3, 4 y 5 carbonos, respectivamente. Después de 6 carbonos el punto de fusión se eleva de manera irregular.

Esto se debe a que el aumento del número de átomos de carbono interfiere en la asociación entre las moléculas. Los ácidos monocarboxílicos aromáticos son sólidos cristalinos con puntos de fusión altos respecto a los ácidos alifáticos.


Los ácidos fórmico y acético (1, 2 carbonos) son líquidos de olores irritantes. Los ácidos butíricos, valeriano y capróico (4, 5 y 6 carbonos) presentan olores desagradables. Los ácidos con mayor cantidad de carbonos presentan poco olor.


NombrePto. de fusión ºCPto. de ebullición ºCSolubilidad gr en 100 gr de agua.
Ac. metanóico8100,5Muy soluble
Ac. etanóico16,6118Muy soluble
Ac. propanóico-22141Muy soluble
Ac. butanóico-6164Muy soluble
Ac. etanodióico1892390,7
Ac. propanodióico135,6Soluble
Ac. fenilmetanóico122Soluble
Ac. ftálico231250O,34





Propiedades Químicas :


El comportamiento químico de los ácidos carboxílicos esta determinado por el grupo carboxilo -COOH. Esta función consta de un grupo carbonilo (C=O) y de un hidroxilo (-OH). Donde el -OH es el que sufre casi todas las reacciones: pérdida de protón (H+) o reemplazo del grupo –OH por otro grupo.



Constantes de acidez de algunos ácidos carboxílicos:

Ácidos alifáticosKaÁcidos aromáticosKa
Métanoico17,7 x 10-5Fenil-metanóico6,3 x 10-5
Etanóico1,75 x 10-5Paranitrobenzóico36 x 10-5
Propanóico1,3 x 10-5Metanitrobenzoico32 x 10-5
2-metilbutanoico1,68 x 10-5Ortonitrobenzóico670 x 10-5



Síntesis de los ácidos carboxílicos

Los ácidos carboxílicos pueden obtenerse a partir de reacciones químicas como la oxidación de alcoholes primarios, de los compuestos alquil-bencénicos y por la hidrólisis de nitrilos entre otras.

Oxidación de alcoholes primarios: para obtener ácidos carboxílicos mediante esta reacción, el alcohol primario se trata con un agente oxidante fuerte donde el alcohol actúa como un agente reductor oxidándose hasta ácido carboxílico.





Oxidación de los compuestos alquil-bencénicos: la oxidación de los derivados alquil-bencénicos con mezclas oxidantes fuertes llevan a la formación de ácidos carboxílicos.






Hidrólisis de Nitrilos: los nitrilos se hidrolizan al ser sometidos a ebullición con ácidos minerales o álcalis en solución acuosa, generando ácidos carboxílicos mediante sustitución nucleofílica.









Derivados de los Ácidos Carboxílicos: Los derivados carboxílicos son compuestos que presentan el grupo acilo o el grupo aroilo en los ácidos alifáticos o aromáticos.

Entre los derivados de los ácidos carboxílicos se encuentran: las sales de ácido, los ésteres, los haluros de ácidos, anhídridos de ácidos, amidas e imidas.

Propiedades Físicas De Los Derivados De Ácidos Carboxílicos:

Los ésteres no presentan puentes de hidrógeno intermolecular por lo que sus puntos de ebullición son similares a los de los alcanos de pero molecular similar. A partir de los tres átomos de carbono, su solubilidad en agua disminuye. Se disuelven bien en solventes orgánicos. Los más volátiles tienen olores agradables. Se usan en perfumería y para preparar condimientos artificiales. 




Haluros de ácido: La mayor importancia la tienen los cloruros de ácido. El primer miembro de la serie alifática es el cloruro de metanoilo o cloruro de formilo, el cual es un compuesto inestable.

La mayoría son líquidos de bajo punto de fusión y olores irritantes. No presentan puente de hidrógeno intermolecular, por lo que sus puntos de ebullición son más bajos que los de los ácidos de los que se derivan.

Anhídridos de ácido: En este grupo sólo tiene importancia el anhídrido etanóico, que es un compuesto polar, no presenta puente de hidrógeno intermolecular por ser el producto de la deshidratación de dos moles de ácido carboxílico. Sus puntos de ebullición son similares a los de los aldehídos y cetonas de peso molecular semejante. 





El primer miembro de la serie alifática es la metanamida o formamida que es diluida a temperatura ambiente, el resto de las amidas son sólidas. Presentan un puente de hidrógeno intermolecular por lo que sus puntos de ebullición son altos.
Son compuestos polares, lo cual junto con la formación de puente de hidrógeno con el agua las hace solubles en esta. La solubilidad disminuye a partir de los cinco carbonos, debido a que la relación carbono – amino es mayor que 3:1. La etanamida y sus homólogos son excelentes solventes orgánicos.

USOS

A los compuestos que contienen el grupo carboxilo (abreviado -COOH o CO2H) se les denomina ácidos carboxílicos. El grupo carboxilo es el origen de una serie de compuestos orgánicos entre los que se encuentran los haluros de ácido (RCOCl), los anhidridos de ácido (RCOOCOR), los ésteres (RCOOR´), y las amidas (RCONH2).
Algunos ácidos carboxílicos muy utilizados en la industria son:

Ácido acrílico:

Nombre común del ácido propénico. Este compuesto orgánico es un líquido incoloro, inflamable, cáustico y de olor punzante, con una temperatura de ebullición de 142 ºC. El ácido acrílico es el ácido carboxílico insaturado más sencillo; sus sales y ésteres se denominan acrilatos. Su reacción principal es la polimerización: los poliacrilatos resultantes son a menudo transparentes pero quebradizos. Para modificar sus propiedades físicas y químicas, pueden combinarse con otros componentes (copolimerización). Así, el ácido acrílico es el material de partida para fabricar plásticos, barnices, resinas elásticas y adhesivos transparentes.

Ácido benzoico:

Sólido de fórmula C6H5—COOH, poco soluble en agua y de acidez ligeramente superior a la de los ácidos alifáticos sencillos. Se usa como conservador de alimentos. Es poco tóxico y casi insípido. El ácido benzoico se combina con el ácido salicílico en forma de pomada con propiedades antimicóticos. Puede aplicarse sin peligro a la piel. 
Con el ácido benzoico se puede fabricar:

Ácido fumárico:



Acido trans-butenodioico, compuesto cristalino incoloro, de fórmula HO2CCH=CHCO2H, que sublima a unos 200 °C. Se encuentra en ciertos hongos y en algunas plantas, a diferencia de su isómero cis, el ácido maleico (cis-butenodioico), que no se produce de forma natural.
Se utiliza en el procesado y conservación de los alimentos por su potente acción antimicrobiana, y para fabricar pinturas, barnices y resinas sintéticas. 
Con el se puede fabricar:

Ácido linoleico:



Líquido oleoso, incoloro o amarillo pálido, de fórmula CH3(CH2)4(CH=CHCH2)2(CH2)6CO2H, cuyos dobles enlaces presentan configuración cis. Es soluble en disolventes orgánicos y se polimeriza con facilidad, lo que le confiere propiedades secantes. El ácido linoleico es un ácido graso esencial, es decir, es un elemento necesario en la dieta de los mamíferos por ser uno de los precursores de las prostaglandinas y otros componentes de tipo hormonal.

Se encuentra como éster de la glicerina en muchos aceites de semillas vegetales, como los de linaza, soja, girasol y algodón. Se utiliza en la fabricación de pinturas y barnices.

Ácido oleico:



Líquido oleoso e incoloro, de fórmula CH3(CH2)7CH=CH(CH2)7CO2H en su configuración cis (la cadena de carbono continúa en el mismo lado del doble enlace). Es un ácido graso no saturado que amarillea con rapidez en contacto con el aire. Por hidrogenación del ácido oleico se obtiene el ácido esteárico (saturado). No es soluble en agua, pero sí en benceno, alcohol, éter y otros muchos disolventes orgánicos. Se solidifica por enfriamiento y funde a 14 °C. Su isómero trans (ácido elaídico) es sólido y funde a 51 °C; se puede obtener por calentamiento del ácido oleico en presencia de un catalizador.
Junto con el ácido esteárico y el ácido palmítico se encuentra, en forma de éster, en la mayoría de las grasas y aceites naturales, sobre todo en el aceite de oliva. Se obtiene por hidrólisis del éster y se purifica mediante destilación. Se utiliza en la fabricación de jabones y cosméticos, en la industria textil y en la limpieza de metales. 

Ácido salicílico:


Sólido blanco y cristalino, que se encuentra en numerosas plantas, en especial en los frutos, en forma de metilsalicilato, y se obtiene comercialmente a partir del fenol.
Tiene un sabor ligeramente dulce; es poco soluble en agua y más soluble en alcohol, éter y cloroformo. Tiene un punto de fusión de 159 °C. Este ácido se emplea sobre todo para preparar algunos ésteres y sales importantes. El salicilato de sodio, que se obtiene tratando el fenolato de sodio con dióxido de carbono a presión, se usa para preservar alimentos y en mayor medida para elaborar preparados antisépticos suaves como pasta de dientes y colutorios. Los compuestos salicílicos medicinales empleados como analgésicos y antipiréticos son el ácido acetilsalicílico y el fenilsalicilato, que se venden bajo el nombre comercial de aspirina y salol, respectivamente. El metilsalicilato es el principal componente del aceite de gaulteria o esencia de Wintergreen, y se fabrica sintéticamente en grandes cantidades por reacción de ácido salicílico y metanol. 
Con el se puede fabricar también:



Ácido caprílico o Ácido undecilénico:



Líquido amarillo de fórmula CH3(CH2)4COOH, con olor a rancio característico, de actividad fungicida contra diversos hongos. El ácido caprílico y sus sales presentan acción dermatomicótica. 

Ácido esteárico:


Sólido orgánico blanco de apariencia cristalina, de fórmula CH3(CH2)16COOH. No es soluble en agua, pero sí en alcohol y éter. Junto con los ácidos láurico, mirístico y palmítico, forma un importante grupo de ácidos grasos. Se encuentra en abundancia en la mayoría de los aceites y grasas, animales y vegetales, en forma de éster—triestearato de glicerilo o estearina— y constituye la mayor parte de las grasas de los alimentos y del cuerpo humano. El ácido se obtiene por la hidrólisis del éster, y comercialmente se prepara hidrolizando el sebo. Se utiliza en mezclas lubricantes, materiales resistentes al agua, desecantes de barnices, y en la fabricación de velas de parafina. Combinado con hidróxido de sodio el ácido esteárico forma jabón (estearato de sodio).
El ácido esteárico se emplea para combinar caucho o hule con otras sustancias, como pigmentos u otros materiales que controlen la flexibilidad de los productos derivados del caucho; también se usa en la polimerización de estireno y butadieno para hacer caucho artificial. 

Ácido etanoico o Ácido acético:


Líquido incoloro, de fórmula CH3 COOH, de olor irritante y sabor amargo. En una solución acuosa actúa como ácido débil. El ácido etanoico puro recibe el nombre de ácido etanoico glacial, debido a que se congela a temperaturas ligeramente más bajas que la ambiente. En mezclas con agua solidifica a temperaturas mucho más bajas. El ácido etanoico es miscible (mezclable) con agua y con numerosos disolventes orgánicos.
Las soluciones diluidas (de 4 a 8%) preparadas de este modo a partir del vino, sidra o malta constituyen lo que conocemos como vinagre. El ácido etanoico concentrado se prepara industrialmente mediante distintos procesos, como la reacción de metanol (alcohol metílico) y de monóxido de carbono (CO) en presencia de un catalizador, o por la oxidación del etanal (acetaldehído).
El ácido acético se utiliza en la producción de acetato de rayón, plásticos, películas fotográficas, disolventes para pinturas y medicamentos como la aspirina. Tiene un punto de ebullición de 118 °C y un punto de fusión de 17 °C.

RIESGOS

Hay estudios en los cuales indican que cuando hay fraccionamiento de las ligaduras químicas
hay formación de compuestos oxigenados (aldehidos, ácidos carboxílicos y cetonas) los cuales tornan el producto levemente ácido, ese sería una desventaja para tal tecnología.

Algunos Reactivos:
  • Hidróxido de sodio
Riesgos

-Ingestión: Puede causar daños graves y permanentes al sistema gastrointestinal.
-Inhalación: Irritación con pequeñas exposiciones, puede ser dañino o mortal en altas dosis.
-Piel: Peligroso. Los síntomas van desde irritaciones leves hasta úlceras graves.
-Ojos: Peligroso. Puede causar quemaduras, daños a la córnea o conjuntiva.

  • Ácido Benzoico
Riesgos:

En personas sensibles se pueden producir reacciones alérgicas. En estos casos se desaconseja el consumo de alimentos que pueden contener ácido benzoico.
Especialmente si se ha detectado una sensibilidad al ácido  acetilsalicílico hay que tener cuidado. En combinación con ácido ascórbico (E300), se puede formar benceno, un hidrocarburo altamente cancerígeno. También la presencia de E220 (dióxido de azufre y sus derivados), colorantes artificiales diazoicos, ácido salicílico, etc.,pueden aumentar los riesgos.
No se deben dar alimentos con contenido en ácido benzoico a las mascotas. Ya en pequeñas dosis puede resultar letal para los gatos.
Actualmente se intenta sustituir el ácido benzoico y sus derivados por conservantes menos peligrosos.

  • Acido Clorhídrico
Riesgos

-Ingestión: Puede producir gastritis, quemaduras, gastritis hemorrágica, edema, necrosis. Se recomienda beber agua o leche y NO inducir el vómito.
-Inhalación: Puede producir irritación, edema y corrosión, del tracto respiratorio, bronquitis crónica. Se recomienda llevar a la persona a un lugar con aire fresco, mantenerla caliente y quieta. Si se detiene la respiración practicar reanimación pulmonar.
-Piel: Peligroso: Puede producir quemaduras, úlceras, irritación. Retirar de la zona afectada toda la vestimenta y calzados y lavar con agua abundante durante al menos 20 minutos.
-Ojos: Peligroso: Puede producir necrosis en la córnes, inflamación en el ojo, irritación ocular y nasal, úlcera nasal. Lavar el o los ojos expuestos con abundante agua durante al menos 15 minutos.

NOMENCLATURA Y COMPUESTOS REPRESENTATIVOS

Los ácidos que se encuentran con más frecuencia se conocen por sus nombres comunes; muchos de ellos se basan en la procedencia del ácido. A los ácidos sustituidos se les da nombre ubicando la posición del sustituyente por medio de las letras griegas a, ß, etc. como se ilustra a continuación:
alfa.gif

Estructura
Nombre IUPAC
Nombre común
Fuente natural
HCOOH
Ácido fórmico
Procede de la destilación destructiva de hormigas (formica es hormiga en latín)
CH3COOH
Ácido acético
Vinagre (acetum es vinagre en latín)
CH3CH2COOH
Ácido propiónico
Producción de lácteos (pion es grasa en griego)
CH3CH2CH2COOH
Ácido butírico
Mantequilla (butyrum, mantequilla en latín)
CH3(CH2)3COOH
Ácido valérico
Raíz de valeriana
CH3(CH2)4COOH
Ácido caproico
Olor de cabeza (caper, cabeza en latín)

ÁCIDOS CARBOXILICOS MÁS IMPORTANTES

Ácido acrílico, nombre común en química para el ácido propénico, CH2=CH-COOH. Este compuesto orgánico es un líquido incoloro, inflamable, cáustico y de olor punzante, con una temperatura de ebullición de 142 ºC. El ácido acrílico es el ácido carboxílico insaturado más sencillo; sus sales y ésteres se denominan acrilatos. Industrialmente, este ácido se obtiene, entre otros procedimientos, por oxidación catalítica del propeno o por hidrólisis de la acroleína. Debido al doble enlace, el ácido acrílico —al igual que los compuestos derivados del mismo— es muy reactivo. Su reacción principal es la polimerización: los poliacrilatos resultantes son a menudo transparentes pero quebradizos. Para modificar sus propiedades físicas y químicas, pueden combinarse con otros componentes (copolimerización). Así, el ácido acrílico es el material de partida para fabricar plásticos, barnices, resinas elásticas y adhesivos transparentes.
Ácido benzoico, sólido de fórmula C6H5—COOH, poco soluble en agua y de acidez ligeramente superior a la de los ácidos alifáticos sencillos. Se usa como conservador de alimentos. Es poco tóxico y casi insípido. Se combina con el ácido salicílico en forma de pomada con propiedades antimicóticos. Puede aplicarse sin peligro a la piel
Ácido fumárico, es el ácido trans-butenodioico, compuesto cristalino incoloro, de fórmula HO2CCH=CHCO2H, que sublima a unos 200 °C. Se encuentra en ciertos hongos y en algunas plantas, a diferencia de su isómero cis, el ácido maleico (cis-butenodioico), que no se produce de forma natural.
Es soluble en agua caliente, éter y alcohol. Se obtiene por deshidratación del ácido málico y por isomerización del ácido maleico por distintos procedimientos (acción de la luz, calentamiento...). Interviene en el ciclo de Krebs como intermediario metabólico.
Se utiliza en el procesado y conservación de los alimentos por su potente acción antimicrobiana, y para fabricar pinturas, barnices y resinas sintéticas.
Ácido linoleico, líquido oleoso, incoloro o amarillo pálido, de fórmula CH3(CH2)4(CH=CHCH2)2(CH2)6CO2H, cuyos dobles enlaces presentan configuración cis. Es soluble en disolventes orgánicos y se polimeriza con facilidad, lo que le confiere propiedades secantes. El ácido linoleico es un ácido graso esencial, es decir, es un elemento necesario en la dieta de los mamíferos por ser uno de los precursores de las prostaglandinas y otros componentes de tipo hormonal.
Se encuentra como éster de la glicerina en muchos aceites de semillas vegetales, como los de linaza, soja, girasol y algodón. Se utiliza en la fabricación de pinturas y barnices.
Ácido oleico, líquido oleoso e incoloro, de fórmula CH3(CH2)7CH=CH(CH2)7CO2H en su configuración cis (la cadena de carbono continúa en el mismo lado del doble enlace). Es un ácido graso no saturado que amarillea con rapidez en contacto con el aire. Por hidrogenación del ácido oleico se obtiene el ácido esteárico (saturado). No es soluble en agua, pero sí en benceno, alcohol, éter y otros muchos disolventes orgánicos. Se solidifica por enfriamiento y funde a 14 °C. Su isómero trans (ácido elaídico) es sólido y funde a 51 °C; se puede obtener por calentamiento del ácido oleico en presencia de un catalizador.
Junto con el ácido esteárico y el ácido palmítico se encuentra, en forma de éster, en la mayoría de las grasas y aceites naturales, sobre todo en el aceite de oliva. Se obtiene por hidrólisis del éster y se purifica mediante destilación. Se utiliza en la fabricación de jabones y cosméticos, en la industria textil y en la limpieza de metales.
Ácido salicílico, sólido blanco y cristalino, que se encuentra en numerosas plantas, en especial en los frutos, en forma de metilsalicilato, y se obtiene comercialmente a partir del fenol. Su fórmula es:

Tiene un sabor ligeramente dulce; es poco soluble en agua y más soluble en alcohol, éter y cloroformo. Tiene un punto de fusión de 159 °C. Este ácido se emplea sobre todo para preparar algunos ésteres y sales importantes. El salicilato de sodio, que se obtiene tratando el fenolato de sodio con dióxido de carbono a presión, se usa para preservar alimentos y en mayor medida para elaborar preparados antisépticos suaves como pasta de dientes y colutorios. Los compuestos salicílicos medicinales empleados como analgésicos y antipiréticos son el ácido acetilsalicílico y el fenilsalicilato, que se venden bajo el nombre comercial de aspirina y salol, respectivamente. El metilsalicilato es el principal componente del aceite de gaulteria o esencia de Wintergreen, y se fabrica sintéticamente en grandes cantidades por reacción de ácido salicílico y metanol.
Ácido caprílico o Ácido undecilénico es un líquido amarillo de fórmula CH3(CH2)4COOH, con olor a rancio característico, de actividad fungicida contra diversos hongos. El ácido caprílico y sus sales presentan acción dermatomicótica.
Ácido esteárico, sólido orgánico blanco de apariencia cristalina, de fórmula CH3(CH2)16COOH. No es soluble en agua, pero sí en alcohol y éter. Junto con los ácidos láurico, mirístico y palmítico, forma un importante grupo de ácidos grasos. Se encuentra en abundancia en la mayoría de los aceites y grasas, animales y vegetales, en forma de éster—triestearato de glicerilo o estearina— y constituye la mayor parte de las grasas de los alimentos y del cuerpo humano. El ácido se obtiene por la hidrólisis del éster, y comercialmente se prepara hidrolizando el sebo. Se utiliza en mezclas lubricantes, materiales resistentes al agua, desecantes de barnices, y en la fabricación de velas de parafina. Combinado con hidróxido de sodio el ácido esteárico forma jabón (estearato de sodio).
El ácido esteárico se emplea para combinar caucho o hule con otras sustancias, como pigmentos u otros materiales que controlen la flexibilidad de los productos derivados del caucho; también se usa en la polimerización de estireno y butadieno para hacer caucho artificial.
El ácido esteárico tiene un punto de fusión de 70 °C y un punto de ebullición de 383 °C.
Ácido etanoico o Ácido acético, líquido incoloro, de fórmula CH3 COOH, de olor irritante y sabor amargo. En una solución acuosa actúa como ácido débil. El ácido etanoico puro recibe el nombre de ácido etanoico glacial, debido a que se congela a temperaturas ligeramente más bajas que la ambiente. En mezclas con agua solidifica a temperaturas mucho más bajas. El ácido etanoico es miscible (mezclable) con agua y con numerosos disolventes orgánicos.
Puede obtenerse por la acción del aire sobre soluciones de alcohol, en presencia de cierta clase de bacterias como la Bacterium aceti. Las soluciones diluidas (de 4 a 8%) preparadas de este modo a partir del vino, sidra o malta constituyen lo que conocemos como vinagre. El ácido etanoico concentrado se prepara industrialmente mediante distintos procesos, como la reacción de metanol (alcohol metílico) y de monóxido de carbono (CO) en presencia de un catalizador, o por la oxidación del etanal (acetaldehído).
El ácido acético se utiliza en la producción de acetato de rayón, plásticos, películas fotográficas, disolventes para pinturas y medicamentos como la aspirina. Tiene un punto de ebullición de 118 °C y un punto de fusión de 17 °C.
Ácido láctico Ácido 2-hidroxipropanoico, compuesto incoloro de fórmula CH3CHOHCOOH. Se da bajo dos formas ópticamente activas,dextrógira y levógira*, frecuentemente denominadas ácido D-láctico y ácido L-láctico. En su estado natural es una mezcla ópticamente inactiva compuesta por partes iguales de ambas formas D- y L-, conocida como mezcla 'racémica'.
Normalmente se prepara por fermentación bacteriana de lactosa, almidón, azúcar de caña o suero de la leche. Pequeñas cantidades de ácido L-láctico están presentes en la sangre y en otros fluidos y órganos del cuerpo; este ácido se forma en los tejidos, sobre todo los musculares, que obtienen energía metabolizando azúcar en ausencia de oxígeno. La acumulación de grandes cantidades de este ácido en los músculos produce fatiga y puede causar calambres. El ácido láctico que se forma en la leche por la fermentación de la lactosa es el que hace que aquélla se agrie. El ácido láctico se utiliza para elaborar queso, chucrut, col fermentada, bebidas suaves y otros productos alimenticios.
Ácido málico, es el ácido hidroxibutanodioico, compuesto incoloro de fórmula HO2CCH2CHOHCO2H. Tiene un punto de fusión de unos 100 °C y es soluble en agua y en alcohol. El químico sueco Carl W. Scheele fue quien determinó su composición y propiedades.
Existe en dos formas ópticamente activas, aunque el ácido l-málico (isómero levógiro) es el único de origen natural. La mezcla racémica fue descubierta por Louis Pasteur.
Se encuentra en las manzanas, uvas y cerezas verdes y en otros muchos frutos, así como en los vinos. Se puede obtener de forma sintética a partir del ácido tartárico y del ácido succínico. Al calentarlo se deshidrata y produce ácido fumárico y ácido maleico. Forma parte del ciclo de Krebs como intermediario metabólico.
Se utiliza como aditivo alimentario por su acción antibacteriana y su agradable aroma. También se emplea en medicina, en la fabricación de ciertos laxantes y para tratar afecciones de garganta.
Ácido metanoico o Ácido fórmico, el más simple de los ácidos orgánicos. Su fórmula química es HCOOH. Es un líquido incoloro de olor irritante cuyos puntos de ebullición y de congelación son de 100,7 ºC y 8,4 ºC respectivamente. Se prepara comercialmente haciendo reaccionar dióxido de carbono con monóxido de carbono a alta temperatura y presión. El ácido metanoico se utiliza a gran escala en la industria química, al igual que para la obtención de tintes y curtidos. En la naturaleza el ácido metanoico aparece en el veneno de las hormigas y de las ortigas.
Ácido oxálico, es el ácido etanodioico, sólido incoloro de fórmula HO2CCO2H, que cristaliza con dos moléculas de agua. A 100 °C pierde el agua de cristalización, y el ácido anhidro funde a 190 °C.
Se encuentra en muchas plantas en forma de sales (oxalatos) de potasio. Su sal de calcio también aparece en ciertos vegetales y en los cálculos renales.
Se puede obtener por oxidación de sustancias orgánicas como los azúcares o la celulosa, pero en la actualidad se prepara a partir de un compuesto sintético: la sal sódica del ácido fórmico.
Se utiliza en análisis químico por su poder reductor y en especial en la determinación de magnesio y de calcio. También se emplea en tintorería, en el curtido de pieles, en síntesis de colorantes y como decapante.
Ácido palmítico, sólido blanco grisáceo, untuoso al tacto, de fórmula CH3(CH2)14COOH. Es un ácido graso saturado que se encuentra en una gran proporción en el aceite de palma, de ahí su nombre. Es soluble en alcohol y éter, pero no en agua. Tiene un punto de fusión de 63 °C y un punto de ebullición de 271 °C a una presión de 100 mm de mercurio.
Se encuentra en la mayoría de las grasas y aceites, animales y vegetales, en forma de éster (tripalmitato de glicerilo o palmitina). Por saponificación, es decir, por reacción del éster con un álcali (hidróxido de sodio o potasio) se obtiene la sal alcalina, y a partir de ella se puede obtener el ácido por tratamiento con un ácido mineral. Las sales alcalinas tanto del ácido palmítico como del ácido esteárico son los principales constituyentes del jabón.
Se utiliza en aceites lubricantes, en materiales impermeables, como secante de pinturas y en la fabricación de jabón.
Ácido pirúvico, es el ácido a-cetopropanoico, líquido incoloro de olor fuerte y picante, soluble en agua y de fórmula H3CCOCO2H. Tiene un punto de ebullición de 165 °C y un marcado carácter ácido. Fue descubierto por el químico sueco Jöns J. Berzelius a partir del ácido tartárico. En la actualidad se sigue obteniendo por calentamiento de este ácido.
Interviene en numerosas reacciones metabólicas. Por ejemplo, es un producto de degradación de la glucosa que se oxida finalmente a dióxido de carbono y agua.
En las levaduras se produce un proceso de fermentación en el que el ácido pirúvico se reduce a etanol. También puede ser transformado en el hígado en el correspondiente aminoácido, la alanina.
Ácido cítrico, sólido blanco, de fórmula C3H4OH(COOH)3, soluble en agua y ligeramente soluble en disolventes orgánicos, con un punto de fusión de 153 °C. Las disoluciones acuosas de ácido cítrico son algo más ácidas que las de ácido etanoico. El ácido cítrico se encuentra en diferentes proporciones en plantas y animales, ya que es un producto intermedio del metabolismo prácticamente universal. En mayores cantidades se encuentra en el jugo de las frutas cítricas, de las que se obtiene por precipitación, añadiendo óxido de calcio. El citrato de calcio producido se trata con ácido sulfúrico para regenerar el ácido cítrico. La principal fuente de obtención comercial del ácido es la fermentación del azúcar por la acción del hongo Aspergillus niger. Se emplea como aditivo en bebidas y alimentos para darles un agradable sabor ácido. También se utiliza en fármacos, para elaborar papel cianotipo, en imprenta textil y como agente abrillantador de metales.
Ácido succínico, es el ácido butanodioico, sólido incoloro o blanco, de fórmula HO2C(CH2)2CO2H, que funde a 185 °C. Es soluble en agua, éter y alcohol. Interviene en el conjunto de reacciones que constituyen el ciclo de Krebs.
Se encuentra sobre todo en los músculos, en hongos y en el ámbar y otras resinas, de donde se extrae por destilación. Se obtiene por hidrogenación del ácido málico, y en la industria se sintetiza a partir del acetileno y del formaldehído.
Se utiliza en la fabricación de lacas, colorantes, en perfumería y en medicina.
Ácido tartárico, también llamado ácido dihidroxidosuccínico o ácido dihidroxibutanodioico, es un ácido orgánico de fórmula C4H6O6. Este ácido, que se encuentra en muchas plantas, ya era conocido por los griegos y romanos como tártaro, la sal del ácido de potasio que se forma en los depósitos de jugo de uva fermentada. Fue aislado por primera vez en 1769 por el químico sueco Carl Wilhelm Scheele, al hervir el tártaro con creta y descomponer el producto con ácido sulfúrico. La fermentación de los jugos de uvas, tamarindos, piñas y moras produce, en la superficie interna del recipiente, una capa de tartrato ácido de potasio llamada argol o posos. Al hervir el argol en ácido clorhídrico diluido, precipita tartrato de calcio al añadir hidróxido de calcio. Con la adición de ácido sulfúrico diluido se libera el ácido dextrotartárico, el cual gira el plano de luz polarizada a la derecha; este ácido tiene un punto de fusión de 170 °C y es soluble en agua y en alcohol, pero no en éter.
Otra variedad llamada ácido levotartárico es idéntica al ácido dextrotartárico, solo que aquél gira el plano de luz polarizada a la izquierda. Fue el químico francés Louis Pasteur quien por primera vez preparó este ácido a partir de una sal de sodio y amonio. El ácido tartárico sintetizado en laboratorio es una mezcla de idénticas cantidades de ácidos dextro y levo, y esta mezcla, llamada ácido tartárico racémico, no afecta al plano de luz polarizada. Una cuarta variedad, el ácido mesotartárico, tampoco afecta al plano de luz polarizada, está compensado internamente.
El ácido tartárico, en sus dos formas racémico y dextrorrotatorio, se emplea como aderezo en alimentos y bebidas. También se utiliza en fotografía y barnices, y como tartrato de sodio y de potasio (conocido como sal de Rochelle) constituye un suave laxante.

BIBLIOGRAFIA