Creado Por: Nahid Daniela Vera Chinchilla.
Curso: 11-2T
Propiedades Físicas:
Del mismo modo, cuando se evapora una solución al 37% de formaldehído en agua que contenga de 10 a 15% de metanol se produce un polímero sólido que se conoce como parafolmaldehído. Si se calienta el parafolmaldehído se vuelve a producir el formaldehído en forma gaseosa.
También se forman polímeros cuando las soluciones de formaldehído o acetaldehído se acidifican ligeramente con ácido sulfúrico.
* También se utiliza en la fabricación de numerosos compuestos químicos como la baquelita, la melanina.
* El acetaldehído (etanal) se utiliza como materia prima para la obtención de ácido acético y anhídrido acético y para la elaboración de disolventes. El benzaldehido. se utiliza como intermedio en elaboraciones industriales de colorantes, medicamentos y perfumes.* El Etanal (acetaldehído) es un líquido volátil de olor irritante, tiene una acción anestésicageneral
Las cetonas son usadas en varios aspectos de la vida diaria, pero la más común y usada es la ACETONA,
lo creamos o no, las cetonas se encuentra en una gran variedad de materiales en la que nosotros no nos damos cuenta ni si quiera de que estamos sobre ellas.
Algunos ejemplos de los usos de las cetonas son las siguientes:
.- Fibras Sintéticas (Mayormente utilizada en el interior de los automóviles de gama alta).
.-Solventes Industriales (Como el Thiner y la ACETONA)
.-Aditivos para plásticos (Thiner)
.-Fabricación de catalizadores.
.-Fabricación de saborizantes y fragancias.
.-Síntesis de medicamentos.
.-Síntesis de vitaminas.
.-Aplicación en cosméticos.
..Adhesivos en base de poliuretano
Pero no solo tienen usos y aplicaciones, si no también datos importantes como los siguientes:
1.- El uso de las ACETONAS es frecuente para eliminar manchas en ropa de lana, esmaltes (ya que son derivados de la misma sustancia), esmaltes sintéticos, rubor, lapicero o algunas ceras.
2.- Las CETONAS se encuentran mayormente distribuidas en la naturaleza.
3.- Un ejemplo natura de las CETONAS en el cuerpo humano es la TESTOSTERONA.
4.- Las CETONAS, por lo general, tienen un aroma agradable y existen e gran variedad de perfumes.
5.- Algunos MEDICAMENTOS TÓPICOS (Las cremas por ejemplo) contienen cantidades seguras de CETONAS.
Beneficios Y Riesgos Para La Salud:
Cetonas Aromáticas:
Se destacan las quinonas, derivadas del benceno. Un ejemplo de las cetonas aromáticas es la famosa "Acetona".
Bibliografia:
http://lascetonasytu.blogspot.com/2012/03/como-se-clasifican-las-cetonas.html
http://www.diclib.com/cetona/show/es/es_wiki_10/64#.Ugf42NIyJOI
http://javiera97perez.blogspot.com/2012/04/uso-industrial-de-la-cetona.html
http://www.guatequimica.com/tutoriales/carbonilo/Propiedades_Quimicas.htm
http://www.ulpgc.es/descargadirecta.php?codigo_archivo=4538
http://www.ecured.cu/index.php/Cetonas
http://es.wikipedia.org/wiki/Aldeh%C3%ADdo
http://es.wikipedia.org/wiki/Cetona_(qu%C3%ADmica)
http://recursostic.educacion.es/secundaria/edad/4esofisicaquimica/4quincena10/quimica/tema3/pagina22.htm
http://quimica.laguia2000.com/general/propiedades-de-los-aldehidos
Aldehidos Y Cetonas
Una cetona es un compuesto orgánico caracterizado por poseer un grupo funcional carbonilo unido a dos átomos de carbono, a diferencia de un aldehído, en donde el grupo carbonilo se encuentra unido al menos a un átomo de hidrógeno. Cuando el grupo funcional carbonilo es el de mayor relevancia en dicho compuesto orgánico, las cetonas se nombran agregando el sufijo -ona al hidrocarburo del cual provienen (hexano, hexanona; heptano, heptanona; etc). También se puede nombrar posponiendo cetona a los radicales a los cuales está unido (por ejemplo: metilfenil cetona). Cuando el grupo carbonilo no es el grupo prioritario, se utiliza el prefijooxo- (ejemplo: 2-oxopropanal).
El grupo funcional carbonilo consiste en un átomo de carbono unido con un doble enlace covalente a un átomo de oxígeno.
Los aldehídos son compuestos orgánicos caracterizados por poseer el grupo funcional -CHO. Se denominan como los alcoholes correspondientes, cambiando la terminación -ol por -al. Etimológicamente, la palabra aldehído proviene del latín científico alcoholdehydrogenatum (alcohol deshidrogenado).
Cuando se escriben las fórmulas sin desarrollar, cabe el riesgo de confundir un grupo alcohol con el grupo aldehído. Para evitar esta confusión, en los aldehídos se escribe en último lugar el átomo de oxígeno: R-CHO, mientras que en los alcoholes se escribe en último lugar el hidrógeno: R-COH.
Los aldehídos son lábiles, es decir, sustancias muy reactivas y se convierten con facilidad en ácidos, por oxidación, o en alcoholes, por reducción y se disuelven con facilidad en agua.
CH2O
|
CH3-CHO
|
CH3-CH2-CHO
|
CH3-CH2-CH2-CHO
|
CH3-CH2-CH2-CH2-CHO
|
Se nombran con el nombre de la cadena de carbonos a la que se añade el sufijo -al, el carbono que tiene el doble enlace con el oxígeno es siempre el carbono 1.
El metanal recibe el nombre comercial de formaldehído, formalina o formol. Muy usado en la industria como desinfectante.
El etanal también es conocido comercialmente como acetaldehído es un producto intermedio importante en la fabricación de plásticos, disolventes y colorantes.
Aldehidos
A temperatura de 25ºC, los aldehídos con uno o dos carbonos son gaseosos, de 3 a 11 carbonos son líquidos y los demás son sólidos. Los aldehídos más simples son bastante solubles en agua y en algunos solventes apolares.
Presentan también olores penetrantes y generalmente desagradables. Con el aumento de la masa molecular esos olores van volviéndose menos fuertes hasta volverse agradables en los términos que contienen de 8 a 14 carbonos. Algunos de ellos encuentran inclusive su uso en perfumería (especialmente los aromáticos).
El grupo carboxilo confiere una considerable polaridad a los aldehídos y por esto poseen puntos de ebullición más altos que otros compuestos de peso molecular comparable.
Mientras tanto, no se forman enlaces de hidrógeno intermoleculares, visto que ellos contienen apenas hidrógeno enlazado al carbono. Comparándose las cetonas con los aldehídos isómeros, las cetonas tienen punto de ebullición más elevado y son más solubles en agua, pues sus moléculas son más polares que las de los aldehídos.
Propiedades Químicas:
Los aldehídos y cetonas son bastante reactivos en ocurrencia de gran polarizad generada por el grupo carboxilo, que sirve como lugar de adición nucleofílica y aumentando la acidicidad de los átomos de hidrógeno ligados al carbono α (carbono enlazado directamente al carboxilo). En relación a las cetonas, los aldehídos son bastante más reactivos. Cmo el grupo carbonilo confiere a la molécula una estructura plana y la adición de un reactivo nucleofílico puede ocurrir en dos lugares, osea, la superficie de contacto es mayor, lo que facilita la reacción.
Esto posibilita la formación de racematos (mezcla de enantiómeros), en caso que el carbono sea asimétrico.
Otros factores influencian la reactividad de los aldehídos y cetonas y son las intensidad de la polaridad entre C y O y el volumen de el/los agrupamiento/s enlazado/s al carboxilo.
Los grupos de inducción +I disminuyen la deficiencia electrónica en el carbono y consecuentemente disminuye la afinidad de este por reactivos nucleofílicos (:Nu), o sea la reacción de adición nucleofílica es mas difícil.
Ya los grupos de inducción –I aumentan la deficiencia electrónica en el carbono y consecuentemente aumentan la afinidad de este por reactivos nucleofílicos, o sea, la reacción de adición nucleofílica es más fácil.
En cuanto al volumen de el/los agrupamiento/s enlazado/s el carboxilo, tanto más facilitado será la reacción cuanto menor fuesen esos grupos, debido a un menor impedimento esteárico (facilita la aproximación del reactivo nucleofílico al carbono).
También la velocidad de la reacción crece proporcionalmente a la intensidad de la polaridad del grupo carboxilo, pues más intensa será la carga parcial positiva sobre el carbono, el mayor será su afinidad como el nucleofílico.
REDUCCIÓN A ALCOHOLES:
Por contacto con hidrógeno en presencia de ciertos catalizadores el doble enlace carbono=oxígeno del grupo carbonilo se rompe y un átomo de hidrógeno se acopla a uno de los enlaces para formar el grupo hidroxilo típico de los alcoholes.
REDUCCIÓN A HIDROCARBUROS:
Los aldehídos pueden ser reducidos a hidrocarburos al interactuar con ciertos reactivos y en presencia de catalizadores. En la reducción Wolff-Kishner el acetaldehído se trata con hidrazina como agente reductor y etóxido de sodio como catalizador. El resultado de la reacción produce una mezcla de etano, agua y nitrógeno.
POLIMERIZACIÓN:
Los primeros aldehídos de la clase tienen un marcada tendencia a polimerizar. El formaldehído por ejemplo, polimeriza de forma espontánea a temperatura ligeramente superior a la de congelación (-92°C).
Del mismo modo, cuando se evapora una solución al 37% de formaldehído en agua que contenga de 10 a 15% de metanol se produce un polímero sólido que se conoce como parafolmaldehído. Si se calienta el parafolmaldehído se vuelve a producir el formaldehído en forma gaseosa.
También se forman polímeros cuando las soluciones de formaldehído o acetaldehído se acidifican ligeramente con ácido sulfúrico.
REACCIONES DE ADICIÓN:
Los aldehídos también sufren reacciones de adición, en las cuales se rompe la estructura molecular del aldehído y el agente reaccionante se agrega a la molécula para la formación de un nuevo compuesto.
OXIDACIÓN:
Para oxidar los aldehídos a ácidos orgánicos, puede utilizarse cualquier agente oxidante como el KMnO4 (permanganato de potasio y el K2Cr2O7 (dicromato de potasio).
Para aldehídos:

Algunos Ejemplos pueden ser:

Usos:
Están presentes en numerosos productos naturales y grandes variedades de ellos son de la propia vida cotidiana.
* El saborizante de vainilla se produce sintéticamente. La vainillina es una molécula interesante porque tiene diferentes grupos funcionales: unos grupos aldehídos y un anillo aromático, por lo que es un aldehído aromático.

* El acetaldehído formado como intermedio en la metabolización se cree responsable en gran medida de los síntomas de la resaca tras la ingesta de bebidas alcohólicas.

* El formaldehído es un conservante que se encuentra en algunas composiciones de productos cosméticos. Sin embargo esta aplicación debe ser vista con cautela ya que en experimentos con animales el compuesto ha demostrado un poder cancerígeno.

* El paraldehído se utilizó como sedante e hipnótico; su uso decayó debido a su olor desagradable y al descubrimiento de sustitutos más eficaces.
* El benzaldehído se encuentra en la semilla de las almendras amargas. Se usa como solvente de aceites, resinas y de varios ésteres y éteres celulósicos. Pero éste producto también es ingrediente en los saborizantes de laindustria alimenticia, y en la fabricación de perfumes.

Beneficios Y Riesgos Para La Salud:
La mayor parte de los aldehídos y cetales pueden causar irritación de la piel, los ojos y el sistema respiratorio, siendo este efecto más pronunciado en los miembros inferiores de una serie, en los miembros con la cadena alifática insaturada y en los miem- bros con sustitución halógena. Los aldehídos pueden tener un efecto anestésico, pero las propiedades irritantes de algunos de ellos posiblemente obligen al trabajador a limitar la exposición antes de que ésta sea suficiente como para que se manifiesten los efectos anestésicos. El efecto irritante en las mucosas puede estar relacionado con el efecto cilioestático que inhibe el movimiento de los cilios que tapizan el tracto respiratorio con funciones esencialmente de limpieza. El grado de toxicidad varía mucho en esta familia. Algunos aldehídos aromáticos y ciertos aldehídos alifáticos se metabolizan rápidamente y no producen efectos adversos, pudiendo utilizarse sin riesgos como aromas alimentarios. No obstante, otros miembros de la familia son cancerígenos conocidos o sospechosos y exigen la adopción de medidas de precaución siempre que exista posibilidad de contacto con ellos. Algunos son mutágenos químicos y otros, alergenos. También tienen la capacidad de producir un efecto hipnótico. En el texto siguiente y en las tablas adjuntas se facilitan más datos sobre miembros específicos de la familia.
Compuestos Mas Representativos:
Los aldehídos aromáticos como el benzaldehído se dismutan en presencia de una base dando el alcohol y el ácido carboxílico correspondiente:
2 C6H5C(=O)H → C6H5C(=O)OH + C6H5CH2OH
Con aminas primarias dan las iminas correspondiente en una reacción exotérmica que a menudo es espontánea:
R-CH=O + H2N-R' → R-CH=N-R'
En presencia de sustancias reductoras como algunos hidruros o incluso otros aldehídos pueden ser reducidos al alcohol correspondiente mientras que oxidantes fuertes los transforman en el correspondiente ácido carboxílico.
Con cetonas que portan un hidrógeno sobre un carbono sp³ en presencia de catalizadores ácidos o básicos se producen condensaciones tipo aldol.
Con alcoholes o tioles en presencia de sustancias higroscópicas se pueden obtener acetales por condensación. Como la reacción es reversible y los aldehídos se recuperan en medio ácido y presencia de agua esta reacción se utiliza para la protección del grupo funcional.
La preparación de aldehídos alifáticos se basa en la oxidación de los alcoholes.
Cetonas
Propiedades Físicas:
Las cetonas en general presentan un olor agradable, de hecho, algunas cetonas forman parte de los compuestos utilizados en las mezclas que se venden como perfumes.
El punto de ebullición de las cetonas es en general, más alto que el de los hidrocarburos de peso molecular comparable; así, la acetona y el butano con el mismo peso molecular (58) tienen un punto de ebullición de 56°C, y -0.5°C respectivamente. La solubilidad en agua de las cetonas depende de la longitud de la cadena, hasta 5 átomos de carbono tienen una solubilidad significativa como sucede en los alcoholes, ácidos carboxílicos y éteres.
A partir de 5 átomos la insolubilidad típica de la cadena de hidrocarburos que forma parte de la estructura comienza a ser dominante y la solubilidad cae bruscamente. La presencia del grupo carbonilo convierte a las cetonas en compuestos polares. Los compuestos de hasta cuatro átomos de carbono, forman puente de hidrógeno con el agua, lo cual los hace completamente solubles en agua. Igualmente son solubles en solventes orgánicos.
Punto de Ebullición: los puntos de ebullición de los aldehídos y cetonas son mayores que el de los alcanos del mismo peso molecular, pero menores que el de los alcoholes y ácidos carboxílicos comparables. Esto se debe a la formación de dipolos y a la ausencia de formación de puentes de hidrógeno intramoleculares en éstos compuestos.
Propiedades Químicas:
Reacciones de hidratación de cetonas:
Al añadir una molécula de agua H-OH al doble enlace carbono-oxígeno, resulta un diol. Si se produce un diol con los dos grupos –OH unidos al mismo tiempo, se le llama hidrato. En la reacción de formación de estos, el grupo –OH del agua se une al átomo de carbono del carbonilo, mientras que el –H al átomo de oxígeno carbonilo.
Adición de alcoholes
Al adicionar alcoholes (ROH) a las cetonas se producen hemicetales. Como ejemplo de esta formación esta la reacción entre la acetona y el alcohol etílico. No obstante, los hemicetales no son estables, tienen un bajo rendimiento y en su mayoría no pueden aislarse de la solución.
Adición de amoníaco y sus derivados:
Las cetonas reaccionan con el amoníaco NH3, o con las aminas para formar un grupo de sustancias llamadas iminas o bases de Schiff. Las iminas resultantes son inestables y continúan reaccionando para formar, eventualmente, estructuras más complejas.
Reacción general
Adición del reactivo de Grignard:
Reactivo de Grignard son compuestos organometálicos utilizados en numerosas reacciones orgánicas de síntesis. Al reaccionar dicho reactivo con una cetona se forman alcoholes terciarios con cadenas carbonadas más largas que los compuestos carbonilos que los originaron. Al ser el reactivo de Grignard polarizado debido a la diferencia en las electronegatividades del carbono y del magnesio, ataca primero al oxígeno del carbonilo para después atacar al carbono carbonilo. Como resultado de esta reacción, se obtiene un alcohol terciario.
Créditos: http://organica1.org/qo1/ok/alcohol/alco115.htm
Reacción de sustitución:
Halogenación:
Se da la halogenación cuando una cetona está en presencia de una base fuerte. La reacción de sustitución ocurre en el carbono contiguo al grupo funcional. No obstante, puede reaccionar más de un halógeno, sustituyendo los hidrógenos pertenecientes a la cadena.
En otro ejemplo, este método permite obtener la monobromoactona, un poderoso gas lacrimógeno.
Usos:
La cetona que mayor aplicación industrial tiene es la acetona (propanona) la cual se utiliza como disolvente para lacas y resinas, aunque su mayor consumo es en la producción del plexiglás, empleándose también en la elaboración de resinas epoxi y poliuretanos
Otras cetonas industriales son la metil etil cetona (MEK, siglas el inglés) y la ciclohexanona que además de utilizarse como disolvente se utiliza en gran medida para la obtención de la caprolactama que es un monómero en la fabricación del Nylon 6 y también por oxidación da el ácido adípico que se emplea para fabricar el Nylon 66.
Otras cetonas industriales son la metil etil cetona (MEK, siglas el inglés) y la ciclohexanona que además de utilizarse como disolvente se utiliza en gran medida para la obtención de la caprolactama que es un monómero en la fabricación del Nylon 6 y también por oxidación da el ácido adípico que se emplea para fabricar el Nylon 66.
lo creamos o no, las cetonas se encuentra en una gran variedad de materiales en la que nosotros no nos damos cuenta ni si quiera de que estamos sobre ellas.
Algunos ejemplos de los usos de las cetonas son las siguientes:
.- Fibras Sintéticas (Mayormente utilizada en el interior de los automóviles de gama alta).
.-Solventes Industriales (Como el Thiner y la ACETONA)




..Adhesivos en base de poliuretano
Pero no solo tienen usos y aplicaciones, si no también datos importantes como los siguientes:
1.- El uso de las ACETONAS es frecuente para eliminar manchas en ropa de lana, esmaltes (ya que son derivados de la misma sustancia), esmaltes sintéticos, rubor, lapicero o algunas ceras.
2.- Las CETONAS se encuentran mayormente distribuidas en la naturaleza.
3.- Un ejemplo natura de las CETONAS en el cuerpo humano es la TESTOSTERONA.
4.- Las CETONAS, por lo general, tienen un aroma agradable y existen e gran variedad de perfumes.
5.- Algunos MEDICAMENTOS TÓPICOS (Las cremas por ejemplo) contienen cantidades seguras de CETONAS.
Beneficios Y Riesgos Para La Salud:
Las cetonas son un tipo de ácido. Se acumulan cuando el cuerpo descompone la grasa para convertirla en combustible. El cuerpo quema la grasa si no puede obtener suficiente azúcar(glucosa) para usar como fuente de energía. Cuando el cuerpo quema demasiada grasa muy rápido, se producen cetonas. Las cetonas pasan de su flujo sanguíneo a la orina.
Pruebas en sangre:
El medidor de glucosa en la sangre, Precision Xtra®, puede ser utilizado también para probar cetonas en la sangre. Desde enero de 2009, este es el único medidor que puede hacer la prueba para cetonas en la sangre. A causa de la importancia de identificar cetonas lo antes posible, todo el mundo con diabetes tipo 1 debe considerar un Precision Xtra® para las pruebas de cetona en la sangre, no importa que medidor de glucosa en la sangre utilicen. Para niños y adolescentes, particularmente en la escuela, las pruebas de cetona en la sangre en vez de la de orina puede ser más conveniente, mas fácil de usar, y por lo tanto pueden tener mejor oportunidad de ser utilizado.
Cetonas en orina:
Para obtener una muestra limpia, los hombres o los niños deben limpiarse la cabeza del pene, mientras que las mujeres o las niñas necesitan lavarse el área que hay entre los labios de lavagina con agua enjabonada y enjuagar muy bien. A medida que comience a orinar, deje que una pequeña cantidad de orina caiga a la taza del baño para limpiar la uretra de contaminantes. Luego, ponga un recipiente limpio bajo el chorro urinario y recoja de 30 a 60 ml (una o dos onzas) de orina. Retire el recipiente del chorro de orina. Tape y marque el recipiente y entrégueselo al médico o a su asistente. Para los bebés, lave completamente el área alrededor de la uretra. Abra una bolsa de recolección de orina (una bolsa plástica con una cinta adhesiva en un extremo) y colóquela sobre el bebé. Para los niños, se puede colocar todo el pene dentro de la bolsa y pegar el adhesivo a la piel; para las niñas, la bolsa se coloca sobre los labios mayores. Coloque el pañal como de costumbre sobre la bolsa asegurada. Es posible que se tenga que repetir el procedimiento, ya que los bebés activos pueden desplazar la bolsa. Se debe revisar al bebé frecuentemente y cambiar la bolsa después de que éste haya orinado en ella. La orina se vierte en un recipiente para llevarlo al laboratorio. Las cetonas urinarias se miden usualmente con una "prueba rápida", utilizando una tira reactiva impregnada de químicos específicos que reaccionan con los cuerpos cetónicos. La tira reactiva se sumerge en la muestra de orina y un cambio de color es un indicador de la presencia de cetonas.
Razones por las que se realiza el examen:
Las cetonas son los productos finales del metabolismo rápido o excesivo de los ácidos grasos. Los ejemplos de cetonas son:
Las cetonas estarán presentes en la orina cuando los niveles sanguíneos de éstas sobrepasen cierto nivel. Muchas hormonas, como el glucagón, la epinefrina y la hormona del crecimiento, pueden provocar que los ácidos grasos sean liberados desde la grasa corporal (tejido adiposo) hacia la sangre. Los niveles de estas hormonas se incrementan con la inanición, la diabetes no controlada y muchas otras afecciones. Una deficiencia de insulina relativa al nivel de glucagón también se presenta en personas con diabetes.
Valores normales
Un resultado negativo del examen es normal. Cuando se presentan cetonas en la orina, los resultados generalmente aparecen como pequeña, moderada o grande con estos valores correspondientes:
- Pequeña: < 20 mg/dL
- Moderada: 30 - 40 mg/dL
- Grande: > 80 mg/dL
Los rangos de los valores normales pueden variar ligeramente entre diferentes laboratorios. Hable con el médico acerca del significado de los resultados específicos de su examen
Significado de los resultados anormales:
Un examen positivo puede indicar:
1-. Condiciones nutricionales anormales:
- anorexia
- ayunos
- dietas altas en proteínas o bajas en carbohidratos
- inanición
2-. Trastornos de aumento del metabolismo:
- enfermedad grave o aguda
- quemaduras
- fiebre
- hipertiroidismo
- lactancia (alimentar a un bebé)
- afección posquirúrgica
- embarazo
3-. Anomalías metabólicas, incluyendo una diabetes no controlada o enfermedad de almacenamiento del glucógeno.
4-. Vómito frecuentemente durante un período prolongado.
Compuestos Representativos:
Cetonas alifáticas: Resultan de la oxidación moderada de los alcoholes secundarios. Son compuestos orgánicos caracterizados por poseer el grupo funcional:

Si los radicales alquilo R son iguales la cetona se denomina simétrica, de lo contrario será asimétrica o mixta.
● Isomería
◯ Las cetonas son isómeros de los aldehídos de igual número de carbono.
◯ Las cetonas de más de cuatro carbonos presentan isomería de posición.
Cetonas Aromáticas:
Se destacan las quinonas, derivadas del benceno. Un ejemplo de las cetonas aromáticas es la famosa "Acetona".

Cetonas Mixtas:
Cuando el grupo carbonil se acopla a un radical arilico y un alquilico.Bibliografia:
http://lascetonasytu.blogspot.com/2012/03/como-se-clasifican-las-cetonas.html
http://www.diclib.com/cetona/show/es/es_wiki_10/64#.Ugf42NIyJOI
http://javiera97perez.blogspot.com/2012/04/uso-industrial-de-la-cetona.html
http://www.guatequimica.com/tutoriales/carbonilo/Propiedades_Quimicas.htm
http://www.ulpgc.es/descargadirecta.php?codigo_archivo=4538
http://www.ecured.cu/index.php/Cetonas
http://es.wikipedia.org/wiki/Aldeh%C3%ADdo
http://es.wikipedia.org/wiki/Cetona_(qu%C3%ADmica)
http://recursostic.educacion.es/secundaria/edad/4esofisicaquimica/4quincena10/quimica/tema3/pagina22.htm
http://quimica.laguia2000.com/general/propiedades-de-los-aldehidos
http://www.buenastareas.com/ensayos/Usos-De-Aldeh%C3%ADdos-y-Cetonas/4072566.html
http://profesionseg.blogspot.com/2007/10/riesgos-para-la-salud-de-los-aldehidos.html
http://profesionseg.blogspot.com/2007/10/riesgos-para-la-salud-de-los-aldehidos.html
por favor decirme que quiere decir ocurrencia natural en aldehidos y cetonas
ResponderEliminarCuál es el aldehido representativo de la serie?
ResponderEliminar